

Range-wide Hierarchical population monitoring and modeling to inform greater sage-grouse management

Peter S. Coates, USGS; Cameron L. Aldridge, USGS

Brian G. Prochazka, USGS; Michael S. O'Donnell, USGS; David R. Edmunds, USGS; Mark A. Ricca, USGS; Gregory T. Wann, USGS; Adrian P. Monroe, USGS; Steve E. Hanser, USGS; Lief A. Wiechman, USGS; Michael P. Chenaille, USGS; Julie A. Heinrichs, CSU in cooperation with USGS; Collin Homer, USGS; and Matt Rigge

Project Objectives

1) Create centralized lek database

2) Develop population clusters across the range

3) Estimates of trends and abundances at different spatiotemporal scales

4) Targeted annual warning system for targeted management

Database and Population Clusters

- Statistical and repeatable approach
- Consider Biological Structure
- Cluster leks located in similar habitat
- Minimize movement between clusters and consider landscape barriers
- Regionalize the landscape while capturing sage-grouse connectivity
- Support a hierarchical population monitoring framework

Range-wide Lek Database Reduction to Support <u>Clusters Process only</u>

- Generated range-wide cluster levels 1-13
 - Considered Active and Pending New leks (5,832 leks from original numbers of leks 8,421)
- Final cleaned dataset
 - 262,744 lek observations with male counts (all leks) for Trend Modeling

Neighborhood and Climate Clusters

Neighborhood Cluster

Units: Meter

Climate Cluster

Range-wide Population Clusters Level Selection

- Neighborhood cluster selection justifications (approx. closed populations)
 - GPS & VHF data evaluation
 - Appropriate number of leks for management

Climate cluster selection:

 Assessed relationship between precipitation (late brood period) and population rate of change

Range-wide Data Products – Going Forward

Product	Input Dates	Potential Update Frequency	Management Tool
Standardized lek Database	State data	Annual	Software standardization
Clusters	Last 20-years	None planned	Multi-scale PVA, dual frame monitoring, habitat model partitions, management units, etc.
Population trends	1960-2019	5-to-9 years, requires multiple nadir- to-nadir Oscillations (\bar{x} =9.4 yr)	Long-term monitoring, population assessment
Targeted Annual Warning System (TAWS)	1990-2019	Annual; requires enough data (e.g., Oscillations) to inform today's signals	Adaptive (annual) management

Bayesian State-Space Model Framework

- Partitions process from observation variance
- Accounts for nested structure (lek, neighborhood, climate)

Spatial Variation in Trends at the Climate Cluster Scale

Draft

Spatiotemporal Variation in Trends at the Climate Cluster Scale

Spatiotemporal Variation in Trends at the Climate Cluster Scale

Spatiotemporal Variation in Trends at the Neighborhood Cluster Scale

Spatiotemporal Variation in Trends at the Neighborhood Cluster Scale

Year

Year

Spatiotemporal Variation in Trends at the Neighborhood Cluster Scale

Coates et al. 2016. Proceedings of National Academy of Science 113: 12745–12750

Long-Term Effects of Wildfire on Greater Sage-Grouse— Integrating Population and Ecosystem Concepts for Management in the Great Basin

A 10-km² increase in burned area decreased lambda by approximately **2.1%**

Coates et al. 2016. Proceedings of National Academy of Science 113: 12745–12750

Coates et al. 2016. Proceedings of National Academy of Science 113: 12745–12750

Coates et al. 2016. Proceedings of National Academy of Science 113: 12745–12750

2044

Coates et al. 2016. Proceedings of National Academy of Science 113: 12745–12750

Ravens have experienced population increases by ~350% since 1970s

Coates et al. 2020. Biological Conservation 243: 108409

Coates et al. 2020. Biological Conservation 243: 108409

Preliminary Information—Subject to Revision. Not for Citation or Distribution

Explanations: Increasing Feral Horse Populations

Preliminary Information—Subject to Revision. Not for Citation or Distribution

Explanations: Increasing Feral Horse Populations

Explanations: Increasing Feral Horse Populations

Preliminary Information—Subject to Revision. Not for Citation or Distribution

Extirpation Probabilities at the Neighborhood Cluster Scale

- - State border

No data

Percent of neighborhood clusters (NC) with >50% Probability of Extirpation

- 12.3% of NCs (Short; 19 years)
- 19.2% of NCs (Medium; 38 years)
- 29.6% of NCs (Long; 56 years)

Extirpation Probabilities at the Neighborhood Cluster Scale

Probability of extirpation

- 0 0.10
- > 0.10 0.25
- > 0.25 0.50
- > 0.50 0.75
- > 0.75

Percent of leks with >50% Probability of Extirpation

- 45.7% of leks (Short; 19 years)
- 60.1% of leks (Medium; 38 years)
- 78.0% of leks (Long; 56 years)

Targeted Annual Warning System

Time

Time

TAWS Example Wildfire Effects (Pueblo Fire)

TAWS Example Wildfire Effects (Rush Fire and Pueblo Fire)

TAWS Example Wildfire Effects (Rush Fire and Pueblo Fire)

TAWS Example Wildfire Effects (Rush Fire and Pueblo Fire)

TAWS Results 1990 – 2019 (Range-wide Stability)

TAWS Results 1990 – 2019 (CC Stability)

Conservation Planning Tool

Ecological Applications, 28(4), 2018, pp. 878–896
2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

A conservation planning tool for Greater Sage-grouse using indices of species distribution, resilience, and resistance

MARK A. RICCA ^(D), ^{1,8} Peter S. Coates, ¹ K. Benjamin Gustafson, ¹ Brianne E. Brussee, ¹ Jeanne C. Chambers, ² Shawn P. Espinosa, ³ Scott C. Gardner, ⁴ Sherri Lisius, ⁵ Pilar Ziegler, ⁶ David J. Delehanty, ⁷ and Michael L. Casazza¹

A data-driven decision support tool

- Spatially-explicit simulated management
- Measures predicted ecological benefits to sage-grouse (or other species)
 - Habitat suitability or linked survival
 - Abundance and space use patterns of sage-grouse

Post-fire conservation planning tools *Decision Tree Model: Identifying the 'best' burns to restore*

	Predicted Benefit to Sage-grouse				
2.	1				
Fire	Area burned (ha)	Average ∆GBI / ha	Cumulative ∆GBI / ha	rank ^a	
Spring Peak	5759	25.49	0.61	1 (1,1)	
TRE	2471	8.75	0.81	2 (2,3)	
Indian	5089	5.16	0.94	3 (3,2)	
Como	311	0.96	0.96	4 (4,6)	
Bison	9657	0.66	0.98	5 (5,4)	
Carter Springs	1400	0.65	0.99	6 (6,5)	
Burbank	450	0.19	1.00	7 (7,7)	
Preacher	435	0.09	1.00	8 (8,8)	
Springs	483	0.07	1.00	9 (9,9)	
Laurel	130	0.00	1.00	10 (10,10)	
Rifle	50	0.00	1.00	11 (11,11)	
Weeks	1563	0.00	1.00	12 (12,12)	

Ricca et al. 2018. Ecological Applications 28: 878–896

Conservation Planning Tool – Conifer Treatment

Predicted Benefit to Sage-grouse

Ricca et al. 2018. Ecological Applications 28: 878–896

Next Steps

Phase I

- Open File Report March 2021
- Continue developing web-based, userfriendly application (Shiny)
 - Interactive interface for managers
 - Input data and options
 - Output maps and tables

Phase II – Initiate FY2021 (Partial Funds)

- Begin assessing population change mechanisms
 - climate, sagebrush, development, grazing, etc. -- over time
- Update Database with 2020 Lek data
- Effectiveness of conservation efforts

Thank You

Questions?

Acknowledgments

- Collaborators: USGS Science Centers: Western Ecological Research Center, FORT Collins Science Center (Cameron Aldridge), EROS (Matt Rigge)
- Funders: USGS, BLM, Nevada Department of Wildlife
- Data Partners: Western Association of Fish and Wildlife Agencies, State Wildlife Agencies (CA, NV, OR, ID, WA, UT, CO, WY, MT, ND, and SD), BLM, USFS, USFWS, Private Organizations (ORMAT Inc., LS Power, NV Energy, Midway Gold, Noble Energy), Great Basin Bird Observatory, Idaho State University, University of Idaho (Dawn Davis), University of Nevada Reno, USGS, EROS

